AutoML Debt Scoring

Automated Machine Learning for More Efficient Collection

Business Challenge

- The mean collection rate in the debt collection industry is low
- Collection is still labour-intensive
- \rightarrow Identifying the accounts most likely to be settled is key
- Our client <redacted> currently offers a prediction model to identify them, but it performs poorly

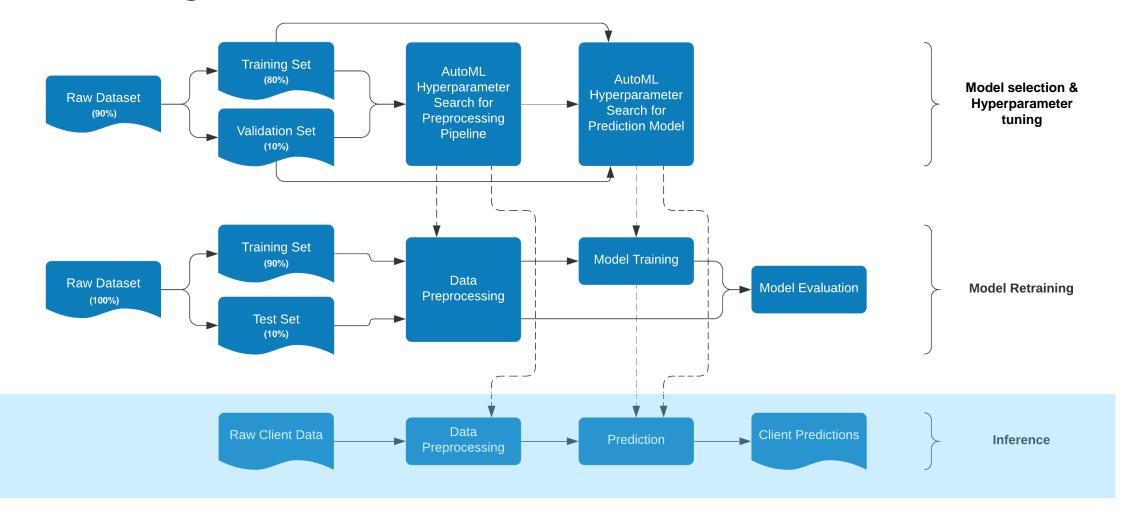
Project Deliverables

- A new prediction model to quickly identify priority accounts
 - <redacted>
- A complete system:
 - <redacted>
- Requirements:
 - Flexibility to adapt to each agency's operations (see next slide)
 - <redacted>
 - What performance metrics? See discussion later.

Modelling Decisions

- Treat as a Binary Classification problem
 - Will pay? Y/N + probability
- Agencies (our client's clients) all operate and use our client's product differently
 - Different operations and data nomenclature
 - Therefore, we must fit a different model for each agency
- Automated Machine Learning pipeline:
 - Develop an AutoML pipeline able to fit different models on different data
 - Promotes quick deployment of new clients and retraining of existing ones

Scoring Model Pipeline



Performance Evaluation: What Metric?

Confusion Matrix

Real life Model	Actual Yes (will pay)	Actual No (won't pay)
Predicted Yes	True Positives (TP)	False Positives (FP)
Predicted No	False Negatives (FN)	True Negatives (TN)

Performance Evaluation: What Metric? (2)

- You said: "We want positive predictions to be correct..."
 - \rightarrow Emphasis on predicted Ys rather than predicted Ns
 - \rightarrow Emphasis on Precision:
 - Proportion of Actual Yes among the Predicted Yes
 - Our confidence that a positive prediction is correct
 - Mathematically:

$$Precision = \frac{TP}{TP + FP}$$

$$Predicted Yes$$

$$Predicted Yes$$

$$True Positives (TP)$$

$$False Positives (FN)$$

$$True Negatives (TN)$$

Performance Evaluation: What Metric? (3)

- But Precision alone is not sufficient
 - Trade-off between Precision and number of Predicted Yes
 - Remember, the model computes *probabilities* of payment
 - \rightarrow Predicted outcome (Y/N) depends on an arbitrary decision threshold
 - Extreme example:
 - To be very confident in her model's positive predictions, Alice decides only to consider "Predicted Yes" above 0.99 probability
 - Her model is good, so almost all these cases are correctly predicted (Actual Yes), leading to Precision \approx 1.0
 - But she will have very few cases to work with, because very few have a probability > 0.99

Real life Model	Actual Yes (will pay)	Actual No (won't pay)
Predicted Yes	True Positives (TP)	False Positives (FP)
Predicted No	False Negatives (FN)	True Negatives (TN)

Performance Evaluation: What Metric? (4)

- You said: "...while having enough positive predictions to work on"
 - → Precision must be balanced with another metric to make sure we are not too selective
 - \rightarrow Recall:
 - Proportion of Actual Yes that have been correctly identified
 - If high, means that we do not leave many Actual Yes on the table
 - Mathematically:

$$\text{Recall} = \frac{TP}{TP + FN}$$

Real life Model	Actual Yes (will pay)	Actual No (won't pay)
Predicted Yes	True Positives (TP)	False Positives (FP)
Predicted No	False Negatives (FN)	True Negatives (TN)

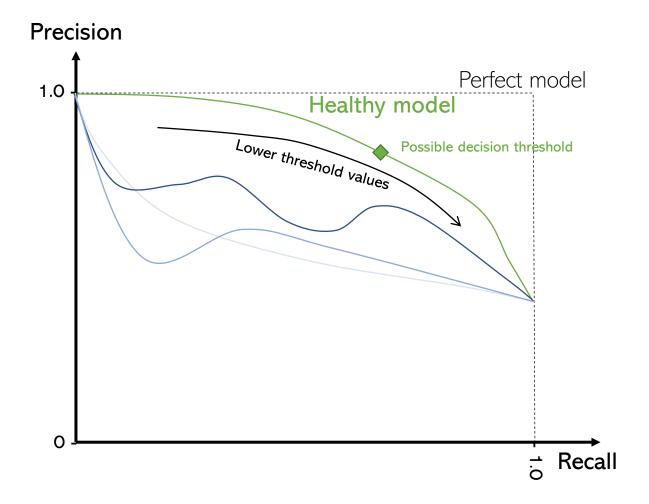
Why Not Use Accuracy?

- Accuracy: proportion of all predictions that were correct $Accuracy = \frac{TP + TN}{TP + FP + FN + TN}$
- Pros:
 - Easy to interpret
 - Good when both classes (Y/N) are equally important
 - Good with balanced dataset
- Cons:
 - Doesn't assign more importance to Predicted Yes
 - Datasets are imbalanced

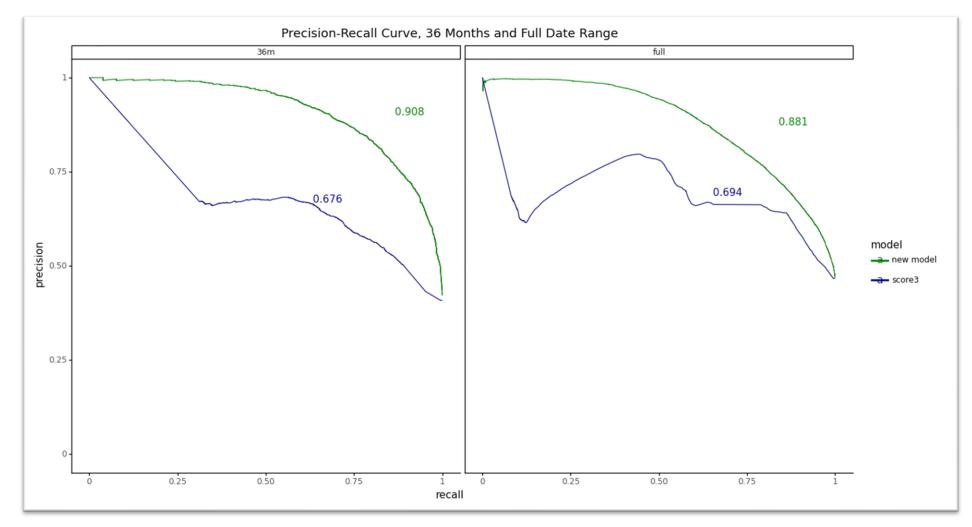
Real life Model	Actual Yes (will pay)	Actual No (won't pay)
Predicted Yes	True Positives (TP)	False Positives (FP)
Predicted No	False Negatives (FN)	True Negatives (TN)

Precision-Recall Curve

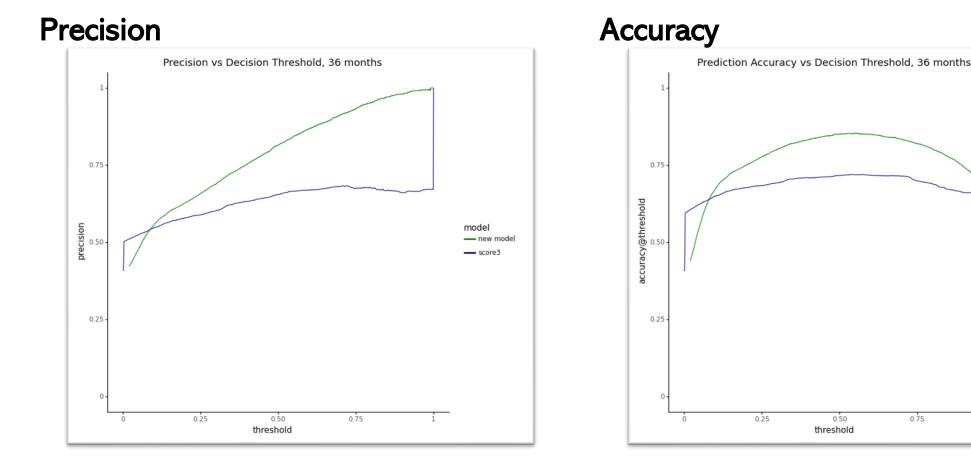
- Shows the P/R trade-off as we move the decision threshold
- We want the line to be towards the top-right corner
 - Maximises precision AND recall for each threshold value
- In other words, we want to maximise the area under the PR curve (AUC-PR)



Results (agency <X>): Precision-Recall Curves



Results (agency <X>): Precision and Accuracy vs Threshold



model

0.50

threshold

0.75

— new model

— score3

Business Implications

- 5 hours per account @ <X> per hour
- Profit per account worked:
 x1.4
- ROI per account worked: • x1.4
- Opportunity cost¹:
 -1/3

10 hours per account @ <X> per hour

• Profit per account worked:

• x5

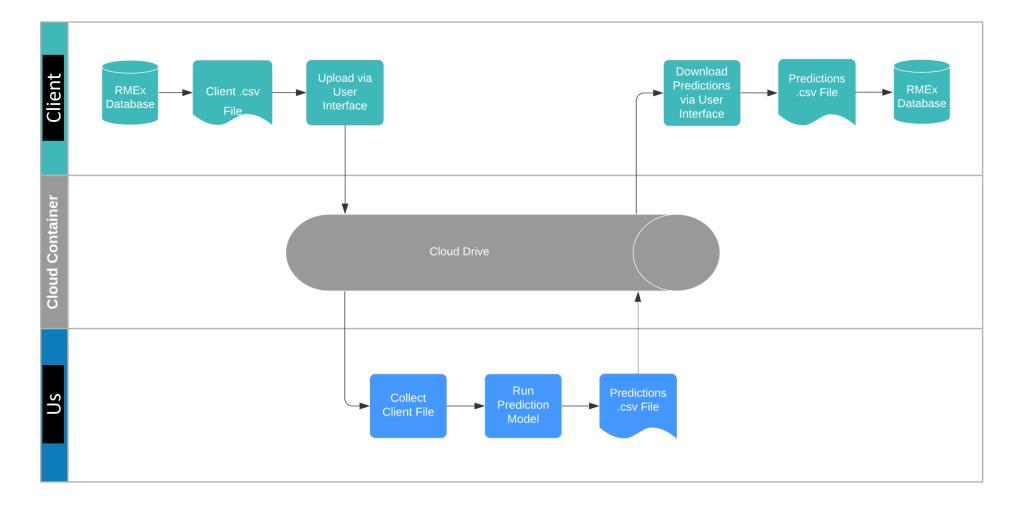
• ROI per account worked:

• x5

Opportunity cost¹:
-1/3

¹ from "Actual Yes" accounts not chased because they were misclassified as "Predicted No"

Model Deployment (Handover Phase)



Proposed Future Developments

- <Redacted>
- <Redacted>
- <Redacted>
- <Redacted>